5.3. 最適解力引動。

最適制御由版の設定がおかがに変あ、たと王、最適解がどっように変化するか?

隣接停留面郡

内处敦定に応じて変化する待留血神の族。

い(大): 最適制御 、 x (大): 対 表 する 最 適 軌 道 、 入(大): 門項作 変 成 かい オイラー・ラケッラニ こっ 方程 で (5.4) - (5.6)

をみたすとする、また、初期状態又(大)が、ストからストちス。へ行小変にしたもの

~> 最適制能 9 稅小变化 : Su(X) 最適軌道 ~ : SX(X) 陷件变换 : SX(X) (+K2K2K)

293,

御小変に後も、オイラー・ラブランショ方程かが成り立つので、

$$\frac{d}{dx}(x+5x) = f(x+5x, u+5u, x)$$

$$(x, u+5x) = x + 5x = 0$$

$$(x, u+5x) = x + 5x = 0$$

$$(3 (1, 63 + 6, 78 + 1)^{7} (24 + 6)^{7} (2$$

$$\bigoplus ((*K) \times \mathcal{E} + (*X) \times) \xrightarrow{\tau} \left(\frac{\partial \mathcal{E}}{\partial x} \right) = (*X) \times \mathcal{E} + (*X) \times \mathcal{E}$$

2中で、Taylor原南を考える、

$$= -\left(\frac{\partial H}{\partial x}\right)^{7} \left(x + Sx, u + Sw, x + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sw, x + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sw, x + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sw, x + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sw, x + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sw, x + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sw, x + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sw, x + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sw, x + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sx, u + Sx, \frac{\partial^{2} H}{\partial x^{2}}\right)^{2} \left(x + Sx, u + Sx$$

$$= -\left(\frac{9x}{9x}\right)_{2}(x'n'x') - \left[\frac{9x}{9x^{5}} \frac{3x}{3x^{5}} \frac{3x}{3x^{5}}\right] \left[\frac{2x}{2x}\right] + O\left(\left\|\begin{bmatrix}\frac{2x}{2x}\end{bmatrix}\right\|\right)$$

$$\frac{3}{3} \left(\frac{36}{3x} \right)^{7} \left(3(3x) + 5x(3x) \right) = \left(\frac{36}{3x} \right)^{7} x(3x) \\
+ \left(\frac{36}{3x} \right)^{7} \left(x(3x) + 0 (1xx) + 0 (11xx) \right) \\
+ \left(\frac{36}{3x} \right)^{7} (x(3x) + 0 (11x) + 0 (11xx) \right) \\
+ \left(\frac{36}{3x} \right)^{7} (x(3x) + 0 (11x) + 0 (11xx) \right) \\
+ \left(\frac{36}{3x} \right)^{7} (x(3x) + 0 (11x) + 0 (11xx) \right) \\
+ \left(\frac{36}{3x} \right)^{7} (x(3x) + 0 (11x) + 0 (11xx) \right) \\
+ \left(\frac{36}{3x} \right)^{7} (x(3x) + 0 (11x) + 0 (11xx) \right) \\
+ \left(\frac{36}{3x} \right)^{7} (x(3x) + 0 (11x) + 0 (11xx) \right) \\
+ \left(\frac{36}{3x} \right)^{7} (x(3x) + 0 (11xx) + 0 (11xx) \right) \\
+ \left(\frac{36}{3x} \right)^{7} (x(3x) + 0 (11xx) + 0 (11xx) \right) \\
+ \left(\frac{36}{3x} \right)^{7} (x(3x) + 0 (11xx) + 0 (11xx) + 0 (11xx) \right) \\
+ \left(\frac{36}{3x} \right)^{7} (x(3x) + 0 (11xx) + 0 ($$

$$\begin{array}{l} \begin{array}{l} \mathcal{E} & \mathcal{E} & \mathcal{E} \\ \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\ \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\ \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\ \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\ \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\ \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\ \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\ \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\ \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\ \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\ \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\ \mathcal{E} & \mathcal{E} \\ \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\ \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal$$

想形常彻的方程之了之意境界(自由处估、容易上断(1)下"主3.0要形行3了至不至方法(LQ制御之为重)

$$(32.2)$$
 $(3(1)) = S(1) + S(1) = S(1) + S(1) = (1) + S$

$$\begin{bmatrix} x^2 & (z - A) \\ (x^2 & (z - A)) \end{bmatrix} = \begin{bmatrix} x^2 \\ (x - A) \end{bmatrix} = \begin{bmatrix} (x - A) \\ (x - A) \end{bmatrix} = \begin{bmatrix} (x - A) \\ (x - A) \end{bmatrix}$$

上半分でる文が、決まるので、下半分に代入。

$$\dot{S} S \chi + S ((A - B S) S \chi) = (-C - A^{T} S) S \chi$$

$$\therefore \dot{S} S \chi = (-A^{T}S - SA + SBS - C) S \chi$$

$$\begin{bmatrix} \dot{x}\dot{z} \\ \dot{z}\dot{z} \end{bmatrix} = \begin{bmatrix} (A - Bz) \dot{z}x \\ (-A^{T}z - zA + zBz - C) \dot{z}x \end{bmatrix}$$

をみた了了(力)によって常に成り立つ、これらり行場の方程がて添め条件(5.28)からの(大)が注まれば、上半分り

 $S\dot{x}(t) = (A(t) - \beta(t)S(t)) Sx(t) = (X(t)) + (X(t))$

「フォランの火と=(人)火とか条膜で、バガッンたようでが常やし大)火とむ、 アウオランのメントを膜が、パルマンたようでは、そんか、すべん)火をしている。 そんか、すべん)火をしている。

(5.25) お 、最適制御 の 行え か 交 (C は . $Su(\pi) = -\left(\frac{3^2H}{3u^2}\right)^{-1}$ $\left(\frac{3^2H}{3u\partial x} + \left(\frac{3^4}{3u}\right)^{-1} 5(\pi)\right)$ $\left(\frac{3}{3}\right)^{-1}$ (S.30) て " 与 え ふ 年 る . T " 与 え ふ 年 る . T " こ た え ふ 年 る . T " こ た え ふ 年 る . T " こ た え ふ み る . T " こ た え ふ み る . T " こ た え ふ み る . T " こ た え ふ み る . T " こ た え ふ み る . T " こ た え ふ み る . T " こ た え ふ み る . T " こ た え ふ み る . T " こ た み る . T " こ た み る . T " こ た み る . T " こ た み る . T " こ た み る . T " こ た み る . T " こ た み る . T " こ た み る . T " こ た み る . T " こ た み る . T " こ た み る . T " こ た み る . T " こ た み る . T " こ た み る . T " こ た み る . T " こ か 。 T " で か 。

2入上の程果を利用して、成3基準とひる最適軌道又(力から実際の軌道がですがですできる最適判例を容易に近れてきる。

- 1、基準と223最適割街可以と時代更成为(大)を初面計算でがある、
- $2, \frac{3}{3} + \frac{3}{3} + \frac{1}{3} + \frac$

··· 29門, 各边9千节日9偏华肉好了,基件之及3种随(豆(丸),可人),豆(丸)

3, 実際の制御 対象の状態 $\chi(t)$ を 例定にて、てもに 知る制御入かを、 $\mu(t)$ = $\mu(t)$ + $\mu(t)$ ($\mu(t)$ = $\mu(t)$ + $\mu(t)$ + $\mu(t)$ ($\mu(t)$ = $\mu(t)$ + μ

1=よって 与える、

- ハンマナ(こと、て) 基学をりよう事しまのからすでまた又(大) に対しても近にりにかが行える。
 - 通用可能は外で見り、で、一直では国定はアルーが、本分程変配田が、配定はまる。
 - ・制御り塩中にもずかなりしましか、入るよ易全
 - · 产门期状能27升9内处敦定加为中分12变到 L在场气